Kolmogorov

 

La complexité de Birkhoff

17.04.2015 | par Jean-Paul Delahaye | 5 Commentaires

La plus grande découverte d'Alan Turing est sans doute qu'il y a une notion universelle unique de fonction calculable. Cette notion se définit avec les machines élémentaires qu'il introduisit dans son article de 1936 et qu'Alonzo Church a nommées « machines de Turing ». L'idée peut aussi se formuler de nombreuses façons différentes, par le lambda-calcul, par des systèmes d'équations, par les langages de programmation, etc. On prouve que les notions obtenues sont équivalentes ce qui conforte l'idée que la notion proposée... Lire la suite

Le tout est-il plus que la somme des parties ?

20.06.2013 | par Jean-Paul Delahaye | 35 Commentaires

J'ai toujours été agacé par la maxime «Le tout est plus que la somme de ses parties» due au grand Aristote. Elle a été commentée mille fois et presque toujours applaudie sans beaucoup de sens critique. La raison de cette agacement est que je ne voyais pas à quoi pouvait correspondre sérieusement —c'est-à-dire mathématiquement ou logiquement— ce "plus" que posséderait toujours le tout sur la somme de ses parties. Pour donner à la maxime un sens intéressant —et si possible... Lire la suite